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With the use of the solution of the Dirichlet nonstationary problem with discontinuous unmixed
boundary conditions on the surface of an isotropic half-space a two-dimensional model of the prob-
lem with a moving phase boundary is considered. The problem models, for example, the processes of
freezing of moist ground or the processes of formation of ice in stagnant water if a temperature
lower than the freezing temperature is prescribed on the boundary surface in a circular region of
finite radius. The classical one-dimensional result follows as a particular case from solution of this
problem for an infinite radius of the circle.

Many processes of heat exchange are associated with a change in the physicochemical nature of a
material or a substance in regions with moving boundaries. The thermophysical coefficients of transfer can
change in steps, and a certain heat of transformation (in freezing, melting, evaporation, and crystallization) or
heat of chemical reactions is required for thermodynamic transformations (transitions). Rather voluminous ref-
erences on this subject are given in the review work [1] devoted to the methods of solution of the boundary-
value problems of heat conduction in regions with moving boundaries, which is attributed, first of all, to the
importance of such investigations for different practical applications in nuclear power engineering, space and
laser technology, ecology, medicine, structural thermal physics, etc.

In the monographs [2, p. 421, and 3, p. 256], the one-dimensional nonstationary problem of Stefan is
investigated in studying the processes of freezing of moist ground and the processes of formation of ice in
stagnant water. The model of a half-space is used as the physical model of the body under study, while the
mathematical model is based on a system of two one-dimensional differential equations of nonstationary heat
conduction in the presence of a moving boundary of phase transformation on a plane interface of the corre-
sponding phases and in the presence of the corresponding conditions. Thus, for example, for the one-dimen-
sional problem of freezing of moist ground the conditions at the phase boundary are written in the form [2]

T1 (ξ, τ) = T2 (ξ, τ) = Tfr ,   λ1 
∂T1 (ξ, τ)

∂x
 − λ2 

∂T2 (ξ, τ)
∂x

 = ρ∗ Wγ2 
dξ
dτ

 ,

where T1(x, τ) and T2(x, τ) are the temperature fields of the frozen (0 < x < ξ) and moist (ξ < x < ∞) regions
of the ground respectively, λ1 and λ2 are the coefficients of thermal conductivity in the corresponding re-
gions, Tfr = const is the freezing temperature, W is the moisture content of the ground, γ2 is the density of
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the ground, ρ∗  is the heat of phase transformation, ξ = ξ(τ) is the law of movement (generally speaking,
unknown) of the phase boundary, x is the space variable, and τ ≥ 0 is the time variable. In [2], the solution
is considered and an analysis is made of the corresponding temperature fields in the case of freezing of moist
ground, while in [3] the corresponding process of formation of ice in stagnant water (Tfr ≡ 0) is described.

Let us consider the formulation and solution of the corresponding problem with a moving boundary
for a two-dimensional case. We assume that the moist ground is in a melted (thawed) state and has a uniform
(throughout the volume) initial temperature distribution T(r, z, 0) = T0 > 0, where r > 0 and z > 0 are the cy-
lindrical coordinates. At the initial time τ = 0, a certain temperature of the medium Tm = const is instantane-
ously established in the circular region 0 < r < R on the surface of the moist ground z = 0; with all the
changes this temperature is lower than the freezing temperature (Tm < Tfr). As a result, for certain values of
R, Tm, T0, and Tfr a frozen layer can be formed; this layer is related to the velocity of motion of the phase
boundary along the normal to the limiting isothermal surface with a temperature T(η, ξ, τ), where η = η(τ)
and ξ = ξ(τ). We note that the limiting moving boundary 0 < η < R, ξ > 0 has the freezing temperature Tfr. At
this moving boundary, the transition from one aggregative state to another occurs, which requires a certain
heat of phase transformation ρ∗ . We will assume that when z, r → ∞ the boundaries of the melted zone have
a certain constant temperature of the ground and the transfer coefficients (a, thermal diffusivity, c, specific
heat, λ, thermal conductivity, and b = λ ⁄ √a , thermal activity) of the frozen and melted zones are different.
We also assume that the transfer of heat in the ground occurs only due to the process of heat conduction.

In a locally frozen ground, there can be two zones (the zone of frozen ground r < η < R, z < ξ, i.e.,
the zone with index 1, and the zone of melted ground η < r < R, z > ξ, i.e., the zone with index 2). The
temperature change in these zones is described by the heat-conduction equations
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∂
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∂T1 (r, z, τ)

∂r
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∂2T1 (r, z, τ)

∂z2  = 
1

a1

 
∂T1 (r, z, τ)

∂τ
 ,   0 < r < η < R ,   0 < z < ξ ,   τ > 0 ; (1)
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∂
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∂T2 (r, z, τ)

∂r




 + 

∂2T2 (r, z, τ)

∂z2  = 
1

a2

 
∂T2 (r, z, τ)

∂τ
 ,   0 < η < r < ∞ ,   ξ < z < ∞ ,   τ > 0 , (2)

with the boundary conditions

T1 (r, 0, τ) = Tm ,   0 < r < R ,   τ > 0 ; (3)

T2 (r, 0, τ) = T0 ,   R < r < ∞ ,   τ > 0 ; (4)

T1 (r, z, 0) = T2 (r, z, 0) = T0 ,   r > 0 ,   z > 0 ; (5)

∂T2 (r, ∞, τ)
∂z

 = 0 ,   r > 0 ,   τ > 0 ; (6)

∂T2 (∞, z, τ)
∂r

 = 0 ,   z > 0 ,   τ > 0 , (7)

and the symmetry condition
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∂T2 (0, z, τ)
∂r

 = 
∂T1 (0, z, τ)

∂r
 = 0 ,   z > 0 ,   τ > 0 . (8)

At the interface between the frozen ground and the melted ground we have the condition

T1 (η, ξ, τ) = T2 (η, ξ, τ) = Tfr (9)

and the nonlinear boundary condition of freezing

λ1 (∇∇ T1⋅n) − λ2 (∇∇ T2⋅n) = ρ∗ Wγ2 (v⋅n) , (10)

where ∇ Ti = 
∂Ti

∂r
i + 

∂Ti

∂z
j, v = 

dη(τ)
dτ

i + 
dξ(τ)

dτ
j is the vector of the velocity of motion of the phase boundary

and n is the vector of the normal to the isothermal surface of phase transformation. Under certain assump-
tions in which the vector of the velocity of motion of the phase boundary is taken into account in the multi-
dimensional case we can write condition (10) as the system of two equations

λ1 
∂T1 (η, ξ, τ)

∂z
 − λ2 

∂T2 (η, ξ, τ)
∂z

 = ρ∗ Wγ2 
dξ
dτ

 , (11)

λ1 
∂T1 (η, ξ, τ)

∂r
 − λ2 

∂T2 (η, ξ, τ)
∂r

 = ρ∗ Wγ2 
dη
dτ

 . (12)

Thus, the problem of local freezing of moist ground in the cylindrical region 0 < r < R, z > 0 for
τ > 0 can be formulated as the problem of conjugation of the corresponding temperature fields in the presence
of special boundary conditions at moving phase boundaries.

Let us use the known general solution of the two-dimensional nonstationary problem of Dirichlet for
an orthotropic half-space with discontinuous boundary conditions of the first kind [4]; we will seek the solu-
tions of the differential equations (1) and (2) with boundary conditions (3)–(8) in the form

T1 (r, z, τ) = A1 − 
B1

2
 ∫ 
0

∞


Φ1

(−) (R, z, τ, x) + Φ1
(+) (R, z, τ, x)  J1,0 (R, x, r) dx , (13)

T2 (r, z, τ) = A2 − 
B2

2
 ∫ 
0

∞


Φ2

(−) (R, z, τ, x) + Φ2
(+) (R, z, τ, x)  J1,0 (R, x, r) dx , (14)

where Jk,m(R, x, r) = Jk(x)Jm




r
R

 x


 and Jk(u) and Jm(u) are the Bessel functions of the real argument of the kth

and mth order respectively [5, p. 526];

Φ1
(−) (R, z, τ, x) = exp 




− 

z

R
 x




 erfc 





z

2 √a1τ
 − 

√a1τ
R

 x



 ;

Φ1
(+) (R, z, τ, x) = exp 





z

R
 x




 erfc 





z

2 √a1τ
 + 

√a1τ
R

 x



 ;
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Φ2
(−) (R, z, τ, x) = exp 




− 

z

R
 x




 erfc 





z

2 √a2τ
 − 

√a2τ
R

 x



 ;

Φ2
(+) (R, z, τ, x) = exp 





z

R
 x




 erfc 





z

2 √a2τ
 + 

√a2τ
R

 x



 ;

Ai and Bi, i = 1, 2, are the unknown constants, and the additional probability integral is

erfc (u) = 1 − erf (u) = 
2

√π
 ∫ 
u

∞

exp (− t2) dt .

We find the constants A1 and A2 from boundary conditions (3)–(5). Since erfc (∞) = 0 and the dis-
continuous integral is equal to [5, p. 79; 6, p. 209]

  ∫ 
0

∞

J1 (x) J0 


r
R

 x


 dx = ∫ 

0

∞

J1,0 (R, x, r) dx = U (R − r) = 











1 ,
1 ⁄ 2 ,
0 ,

     
r < R  ,
r = R ,
r > R ,

we have A1 = Tm + B1U(R − r) and A2 = T0, where U(x) is the symmetric unit function.
Consequently, the solutions (13) and (14) will take the form

T1 (r, z, τ) = Tm + B1U (R − r) − 
B1

2
 ∫ 
0

∞


Φ1

(−) (R, z, τ, x) + Φ1
(+) (R, z, τ, x)  J1,0 (R, x, r) dx ; (15)

T2 (r, z, τ) = T0 − 
B2

2
 ∫ 
0

∞


Φ2

(−) (R, z, τ, x) + Φ2
(+) (R, z, τ, x)  J1,0 (R, x, r) dx ,   r < R . (16)

We note that the solutions (15) and (16) satisfy the heat-conduction equations (1) and (2) and condi-
tions (3)–(5).

From condition (9) it follows that

Tm + B1U (R − η) − 
B1

2
 ∫ 
0

∞


Φ1

(−) (R, ξ, τ, x) + Φ1
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx =

(17)
= T0 − 

B2

2
 ∫ 
0

∞


Φ2

(−) (R, ξ, τ, x) + Φ2
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx = Tfr .

Considering that the last equation is fulfilled for any τ > 0, we find

B1 = 
2 (Tfr − Tm)

2U (R − η) − ∫ 
0

∞


Φ1

(−) (R, ξ, τ, x) + Φ1
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx

 , (18)
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B2 = 
2 (T0 − Tfr)

∫ 
0

∞


Φ2

(−) (R, ξ, τ, x) + Φ2
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx

 . (19)

Thus, in the case of finite R > 0 and τ > 0 the values of B1 and B2 are not constant and depend on
ξ and η, which in turn are functions of time. Consequently, the solutions T1(r, z, τ) and T2(r, z, τ) can be
written in the form

T1 (r, z, τ) = Tm + 

(Tfr − Tm) 









2U (R − r) − ∫ 

0

∞


Φ1

(−) (R, z, τ, x) + Φ1
(+) (R, z, τ, x)  J1,0 (R, x, r) dx











2 − ∫ 
0

∞


Φ1

(−) (R, ξ, τ, x) + Φ1
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx

 , (20)

T2 (r, z, τ) = T0 − 

(T0 − Tfr) ∫ 
0

∞


Φ2

(−) (R, z, τ, x) + Φ2
(+) (R, z, τ, x)  J1,0 (R, x, r) dx

∫ 
0

∞


Φ2

(−) (R, ξ, τ, x) + Φ2
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx

 . (21)

Substituting the found expressions (20) and (21) into the boundary conditions of freezing (11) and
(12), we arrive at two integro-differential characteristic equations from which we determine the moving coor-
dinates ξ(τ) and η(τ):

λ1 (Tfr − Tm) 
I1 (R, ξ, η, τ)

2 − S1 (R, ξ, η, τ)
 − λ2 (T0 − Tfr) 

I2 (R, ξ, η, τ)
S2 (R, ξ, η, τ)

 = ρ∗ Wγ2 
dξ
dτ

 , (22)

λ1 (Tfr − Tm) 
– 2δ (R − η) + G1 (R, ξ, η, τ)

2 − S1 (R, ξ, η, τ)
 − λ2 (T0 − Tfr) 

G2 (R, ξ, η, τ)
S2 (R, ξ, η, τ)

 = ρ∗ Wγ2 
dη
dτ

 , (23)

where δ(x) is the Dirac function (symmetric unit impulse function);

Ii (R, ξ, η, τ) = ∫ 
0

∞ 



x

R
 Φi

(−) (R, ξ, τ, x) − Φi
(+) (R, ξ, τ, x)  + 

2

√ πaiτ
 exp 




− 

ξ2

4aiτ
 − 

aiτ

R2  x2







 J1,0 (R, x, η) dx ,

Gi (R, ξ, η, τ) = ∫ 
0

∞
x
R

 Φi
(−) (R, ξ, τ, x) + Φi

(+) (R, ξ, τ, x)  J1,1 (R, x, η) dx ;

Si (R, ξ, η, τ) = ∫ 
0

∞


Φi

(−) (R, ξ, τ, x) + Φi
(+) (R, ξ, τ, x)  J1,0 (R, x, η) dx .
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The formulated problem (1)–(9), (11), and (12) is actually solved. The main difficulty of practical use
of the obtained equations (20) and (21) lies in identifying the moving boundaries ξ(τ) and η(τ) based on Eqs.
(22) and (23). It should be noted that this difficulty holds for the simplest one-dimensional solutions of the
problems with a moving boundary.

Let us consider the limiting case where the radius of a circle R on the surface of an isotropic half-
space tends to infinity, i.e., where we have the case of a one-dimensional problem [2]. In this case, when
R → ∞, Eq. (17) takes the form

Tm + B1 erf 




ξ
2 √a1τ




 = T0 − B2 erfc 





ξ
2 √a2τ




 = Tfr = const , (24)

and since in this one-dimensional case B1 and B2 are constant for any value τ > 0, it is clear that the ratio
ξ ⁄ √τ  must also be a constant, i.e., we can write that ξ = β√τ , where β is the proportionality factor charac-
terizing the velocity of deepening of the freezing zone in the one-dimensional case.

Thus, from (24) we find that

B1 = (Tfr − Tm) ⁄ erf 




β
2 √a1




 ,     B2 = (T0 − Tfr) ⁄ erfc 





β
2 √a2




 . (25)

Consequently, the corresponding limiting solutions from (20) and (21) with account for the value of

the improper integral ∫
0

∞

 J1(x)dx = 1 (see, for example, [6]) will be written in the form

   lim
R→∞

  T1 (r, z, τ) = T1 (z, τ) = Tm + (Tfr − Tm) erf 


z

2 √a1τ



  ⁄ erf 





β
2 √a1




 , (26)

   lim
R→∞

  T2 (r, z, τ) = T2 (z, τ) = T0 − (T0 − Tfr) erfc 


z

2 √a2τ



  ⁄ erfc 





β
2 √a2




 , (27)

which is totally consistent with the solutions of the one-dimensional problem [2, p. 425].
The value of the coefficient β is determined from the formula

λ1 
Tfr − Tm

√a1  erf 




β
2 √a1





 exp 



− 

β2

4a1




 − λ2 

T0 − Tfr

√a2  erfc 




β
2 √a2





 exp 



− 

β2

4a2




 = 

1

2
 √π ρ∗ Wγ2 β , (28)

obtained from (22) for R → ∞, while the method of determination of β from Eq. (28) can be found, for ex-
ample, in [2, p. 425].

We note that when Tfr = 0 and W = 1 the value of β in (28) is related to the process of formation
of ice in stagnant water (this process is investigated in [3, p. 256]). The corresponding formulas (26)–(28) are
simplified, especially in the case T0 = 0.

In conclusion, we note that in investigating the process of local freezing of moist ground in the case
of the presence of mixed discontinuous boundary conditions on its surface (for example, the temperature Tm

is prescribed in the circle 0 < r < R and the condition of ideal heat insulation is prescribed beyond the circle
R < r < ∞), one must solve the corresponding two-dimensional nonstationary problem for an isotropic half-
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space, which is associated with investigation of the so-called pair integral equations with the L-parameter
(see, for example, the monograph [5, Section 2]).
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